24/29.679 - 29/14 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape

Soustraction de fractions : 24/29.679 - 29/14 = ?

Simplifier l'opération

Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • * Pourquoi essaie-t-on de simplifier les fractions ?
  • En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

* * *

La fraction : 24/29.679

  • La décomposition en facteurs premiers du numérateur et du dénominateur :
  • 24 = 23 × 3
  • 29.679 = 3 × 13 × 761
  • Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
  • PGCD (24; 29.679) = 3

24/29.679 = (24 : 3)/(29.679 : 3) = 8/9.893


  • Une autre méthode pour simplifier la fraction :

  • Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
  • 24/29.679 = (23 × 3)/(3 × 13 × 761) = ((23 × 3) : 3)/((3 × 13 × 761) : 3) = 8/9.893


La fraction : - 29/14

- 29/14 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 29 est un nombre premier
  • 14 = 2 × 7
  • PGCD (29; 2 × 7) = 1


Réécrivez l'opération simplifiée équivalente :

24/29.679 - 29/14 =


8/9.893 - 29/14

On réécrit les fractions impropres :

  • Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
  • Chaque fraction impropre sera réécrite comme un nombre entier et une fraction propre, les deux ayant le même signe : divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous.
  • Pourquoi réécrivons-nous les fractions impropres ?
  • En réduisant la valeur du numérateur d'une fraction, les calculs avec cette fraction deviennent plus faciles à effectuer.
* * *

La fraction : - 29/14


- 29 : 14 = - 2 et le reste = - 1 ⇒ - 29 = - 2 × 14 - 1


- 29/14 = ( - 2 × 14 - 1)/14 = ( - 2 × 14)/14 - 1/14 = - 2 - 1/14



Réécrivez l'opération simplifiée équivalente :

8/9.893 - 29/14 =


8/9.893 - 2 - 1/14 =


- 2 + 8/9.893 - 1/14

Effectuez l'opération de calcul avec les fractions.

Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).

  • Pour calculer l'opération des fractions, nous devons :
  • 1) trouver leur dénominateur commun (le même dénominateur)
  • 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
  • 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur

  • * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
  • Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.

1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :

La décomposition des dénominateurs en facteurs premiers :


9.893 = 13 × 761


14 = 2 × 7


Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).

PPCM (9.893; 14) = 2 × 7 × 13 × 761 = 138.502



2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :

Divisez le PPCM par le dénominateur de chaque fraction.


8/9.893 ⟶ 138.502 : 9.893 = (2 × 7 × 13 × 761) : (13 × 761) = 14


- 1/14 ⟶ 138.502 : 14 = (2 × 7 × 13 × 761) : (2 × 7) = 9.893


3) Réduire les fractions au même dénominateur :

  • Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
  • Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.

- 2 + 8/9.893 - 1/14 =


- 2 + (14 × 8)/(14 × 9.893) - (9.893 × 1)/(9.893 × 14) =


- 2 + 112/138.502 - 9.893/138.502 =


- 2 + (112 - 9.893)/138.502 =


- 2 - 9.781/138.502


Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :

- 9.781/138.502 est déjà simplifiée à la forme équivalente la plus simple.

Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.


  • La décomposition en facteurs premiers des deux nombres :
  • 9.781 est un nombre premier
  • 138.502 = 2 × 7 × 13 × 761
  • PGCD (9.781; 2 × 7 × 13 × 761) = 1


Réécrivez le résultat intermédiaire

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :

  • Un nombre fractionnaire : un nombre entier et une fraction propre, tous deux de même signe.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.

- 2 - 9.781/138.502 = - 2 9.781/138.502

Comme fraction impropre négative :
(le numérateur >= le dénominateur)

Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.


- 2 - 9.781/138.502 =


( - 2 × 138.502)/138.502 - 9.781/138.502 =


( - 2 × 138.502 - 9.781)/138.502 =


- 286.785/138.502

Sous forme de nombre décimal :

Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :


- 2 - 9.781/138.502 =


- 2 - 9.781 : 138.502 ≈


- 2,070619918846 ≈


- 2,07

En pourcentage :

  • Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
  • Pour ce faire, multipliez le nombre par la fraction 100/100.
  • La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.

- 2,070619918846 =


- 2,070619918846 × 100/100 =


( - 2,070619918846 × 100)/100 =


- 207,061991884594/100


- 207,061991884594% ≈


- 207,06%



La réponse finale :
:: écrite de quatre manières ::

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
24/29.679 - 29/14 = - 2 9.781/138.502

Comme fraction impropre négative :
(le numérateur >= le dénominateur)
24/29.679 - 29/14 = - 286.785/138.502

Sous forme de nombre décimal :
24/29.679 - 29/14 ≈ - 2,07

En pourcentage :
24/29.679 - 29/14 ≈ - 207,06%

Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.

Autres opérations de ce type :

Comment soustraire les fractions :
33/29.686 - 39/16

Soustraire des fractions, calculateur en ligne :

En savoir plus sur les fractions (communes, ordinaires) / la théorie :