118/67 - 182/89 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape
Soustraction de fractions : 118/67 - 182/89 = ?
Simplifier l'opération
Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- * Pourquoi essaie-t-on de simplifier les fractions ?
- En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
* * *
La fraction : 118/67
118/67 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 118 = 2 × 59
- 67 est un nombre premier
- PGCD (2 × 59; 67) = 1
La fraction : - 182/89
- 182/89 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 182 = 2 × 7 × 13
- 89 est un nombre premier
- PGCD (2 × 7 × 13; 89) = 1
On réécrit les fractions impropres :
- Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.
- Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
- Chaque fraction impropre sera réécrite comme un nombre entier et une fraction propre, les deux ayant le même signe : divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous.
- Pourquoi réécrivons-nous les fractions impropres ?
- En réduisant la valeur du numérateur d'une fraction, les calculs avec cette fraction deviennent plus faciles à effectuer.
La fraction : 118/67
118 : 67 = 1 et le reste = 51 ⇒ 118 = 1 × 67 + 51
118/67 = (1 × 67 + 51)/67 = (1 × 67)/67 + 51/67 = 1 + 51/67
La fraction : - 182/89
- 182 : 89 = - 2 et le reste = - 4 ⇒ - 182 = - 2 × 89 - 4
- 182/89 = ( - 2 × 89 - 4)/89 = ( - 2 × 89)/89 - 4/89 = - 2 - 4/89
Réécrivez l'opération simplifiée équivalente :
118/67 - 182/89 =
1 + 51/67 - 2 - 4/89 =
- 1 + 51/67 - 4/89
Effectuez l'opération de calcul avec les fractions.
Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).
- Pour calculer l'opération des fractions, nous devons :
- 1) trouver leur dénominateur commun (le même dénominateur)
- 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
- 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur
- * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
- Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.
1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :
La décomposition des dénominateurs en facteurs premiers :
67 est un nombre premier
89 est un nombre premier
Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).
PPCM (67; 89) = 67 × 89 = 5.963
2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :
Divisez le PPCM par le dénominateur de chaque fraction.
51/67 ⟶ 5.963 : 67 = (67 × 89) : 67 = 89
- 4/89 ⟶ 5.963 : 89 = (67 × 89) : 89 = 67
3) Réduire les fractions au même dénominateur :
- Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
- Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.
- 1 + 51/67 - 4/89 =
- 1 + (89 × 51)/(89 × 67) - (67 × 4)/(67 × 89) =
- 1 + 4.539/5.963 - 268/5.963 =
- 1 + (4.539 - 268)/5.963 =
- 1 + 4.271/5.963
Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
4.271/5.963 est déjà simplifiée à la forme équivalente la plus simple.
Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres :
- 4.271 est un nombre premier
- 5.963 = 67 × 89
- PGCD (4.271; 67 × 89) = 1
Réécrivez le résultat intermédiaire
Sous forme de fraction propre négative :
(le numérateur < le dénominateur)
- Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
- 1 + 4.271/5.963 =
( - 1 × 5.963)/5.963 + 4.271/5.963 =
( - 1 × 5.963 + 4.271)/5.963 =
- 1.692/5.963
Sous forme de nombre décimal :
Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :
- 1.692/5.963 =
- 1.692 : 5.963 ≈
- 0,283749790374 ≈
- 0,28
En pourcentage :
- Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
- Pour ce faire, multipliez le nombre par la fraction 100/100.
- La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.