- 928/189 + 180/114 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape

Soustraction de fractions : - 928/189 + 180/114 = ?

Simplifier l'opération

Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • * Pourquoi essaie-t-on de simplifier les fractions ?
  • En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

* * *

La fraction : - 928/189

- 928/189 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 928 = 25 × 29
  • 189 = 33 × 7
  • PGCD (25 × 29; 33 × 7) = 1

La fraction : 180/114

  • La décomposition en facteurs premiers du numérateur et du dénominateur :
  • 180 = 22 × 32 × 5
  • 114 = 2 × 3 × 19
  • Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
  • PGCD (180; 114) = 2 × 3 = 6

180/114 = (180 : 6)/(114 : 6) = 30/19


  • Une autre méthode pour simplifier la fraction :

  • Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
  • 180/114 = (22 × 32 × 5)/(2 × 3 × 19) = ((22 × 32 × 5) : (2 × 3))/((2 × 3 × 19) : (2 × 3)) = 30/19



Réécrivez l'opération simplifiée équivalente :

- 928/189 + 180/114 =


- 928/189 + 30/19

On réécrit les fractions impropres :

  • Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
  • Chaque fraction impropre sera réécrite comme un nombre entier et une fraction propre, les deux ayant le même signe : divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous.
  • Pourquoi réécrivons-nous les fractions impropres ?
  • En réduisant la valeur du numérateur d'une fraction, les calculs avec cette fraction deviennent plus faciles à effectuer.
* * *

La fraction : - 928/189


- 928 : 189 = - 4 et le reste = - 172 ⇒ - 928 = - 4 × 189 - 172


- 928/189 = ( - 4 × 189 - 172)/189 = ( - 4 × 189)/189 - 172/189 = - 4 - 172/189


La fraction : 30/19


30 : 19 = 1 et le reste = 11 ⇒ 30 = 1 × 19 + 11


30/19 = (1 × 19 + 11)/19 = (1 × 19)/19 + 11/19 = 1 + 11/19



Réécrivez l'opération simplifiée équivalente :

- 928/189 + 30/19 =


- 4 - 172/189 + 1 + 11/19 =


- 3 - 172/189 + 11/19

Effectuez l'opération de calcul avec les fractions.

Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).

  • Pour calculer l'opération des fractions, nous devons :
  • 1) trouver leur dénominateur commun (le même dénominateur)
  • 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
  • 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur

  • * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
  • Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.

1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :

La décomposition des dénominateurs en facteurs premiers :


189 = 33 × 7


19 est un nombre premier


Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).

PPCM (189; 19) = 33 × 7 × 19 = 3.591



2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :

Divisez le PPCM par le dénominateur de chaque fraction.


- 172/189 ⟶ 3.591 : 189 = (33 × 7 × 19) : (33 × 7) = 19


11/19 ⟶ 3.591 : 19 = (33 × 7 × 19) : 19 = 189


3) Réduire les fractions au même dénominateur :

  • Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
  • Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.

- 3 - 172/189 + 11/19 =


- 3 - (19 × 172)/(19 × 189) + (189 × 11)/(189 × 19) =


- 3 - 3.268/3.591 + 2.079/3.591 =


- 3 + ( - 3.268 + 2.079)/3.591 =


- 3 - 1.189/3.591


Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :

- 1.189/3.591 est déjà simplifiée à la forme équivalente la plus simple.

Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.


  • La décomposition en facteurs premiers des deux nombres :
  • 1.189 = 29 × 41
  • 3.591 = 33 × 7 × 19
  • PGCD (29 × 41; 33 × 7 × 19) = 1


Réécrivez le résultat intermédiaire

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :

  • Un nombre fractionnaire : un nombre entier et une fraction propre, tous deux de même signe.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.

- 3 - 1.189/3.591 = - 3 1.189/3.591

Comme fraction impropre négative :
(le numérateur >= le dénominateur)

Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.


- 3 - 1.189/3.591 =


( - 3 × 3.591)/3.591 - 1.189/3.591 =


( - 3 × 3.591 - 1.189)/3.591 =


- 11.962/3.591

Sous forme de nombre décimal :

Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :


- 3 - 1.189/3.591 =


- 3 - 1.189 : 3.591 ≈


- 3,331105541632 ≈


- 3,33

En pourcentage :

  • Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
  • Pour ce faire, multipliez le nombre par la fraction 100/100.
  • La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.

- 3,331105541632 =


- 3,331105541632 × 100/100 =


( - 3,331105541632 × 100)/100 =


- 333,110554163186/100


- 333,110554163186% ≈


- 333,11%



La réponse finale :
:: écrite de quatre manières ::

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
- 928/189 + 180/114 = - 3 1.189/3.591

Comme fraction impropre négative :
(le numérateur >= le dénominateur)
- 928/189 + 180/114 = - 11.962/3.591

Sous forme de nombre décimal :
- 928/189 + 180/114 ≈ - 3,33

En pourcentage :
- 928/189 + 180/114 ≈ - 333,11%

Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.

Autres opérations de ce type :

Comment soustraire les fractions :
940/195 - 186/121

Soustraire des fractions, calculateur en ligne :

En savoir plus sur les fractions (communes, ordinaires) / la théorie :