- 86/141 - 57/111 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape
Soustraction de fractions : - 86/141 - 57/111 = ?
Simplifier l'opération
Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- * Pourquoi essaie-t-on de simplifier les fractions ?
- En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
* * *
La fraction : - 86/141
- 86/141 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 86 = 2 × 43
- 141 = 3 × 47
- PGCD (2 × 43; 3 × 47) = 1
La fraction : - 57/111
- La décomposition en facteurs premiers du numérateur et du dénominateur :
- 57 = 3 × 19
- 111 = 3 × 37
- Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
- PGCD (57; 111) = 3
- 57/111 = - (57 : 3)/(111 : 3) = - 19/37
Une autre méthode pour simplifier la fraction :
- Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
- 57/111 = - (3 × 19)/(3 × 37) = - ((3 × 19) : 3)/((3 × 37) : 3) = - 19/37
Réécrivez l'opération simplifiée équivalente :
- 86/141 - 57/111 =
- 86/141 - 19/37
Effectuez l'opération de calcul avec les fractions.
Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).
- Pour calculer l'opération des fractions, nous devons :
- 1) trouver leur dénominateur commun (le même dénominateur)
- 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
- 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur
- * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
- Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.
1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :
La décomposition des dénominateurs en facteurs premiers :
141 = 3 × 47
37 est un nombre premier
Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).
PPCM (141; 37) = 3 × 37 × 47 = 5.217
2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :
Divisez le PPCM par le dénominateur de chaque fraction.
- 86/141 ⟶ 5.217 : 141 = (3 × 37 × 47) : (3 × 47) = 37
- 19/37 ⟶ 5.217 : 37 = (3 × 37 × 47) : 37 = 141
3) Réduire les fractions au même dénominateur :
- Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
- Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.
- 86/141 - 19/37 =
- (37 × 86)/(37 × 141) - (141 × 19)/(141 × 37) =
- 3.182/5.217 - 2.679/5.217 =
( - 3.182 - 2.679)/5.217 =
- 5.861/5.217
Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :
- 5.861/5.217 est déjà simplifiée à la forme équivalente la plus simple.
Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres :
- 5.861 est un nombre premier
- 5.217 = 3 × 37 × 47
- PGCD (5.861; 3 × 37 × 47) = 1
Réécrire la fraction
Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
- Un nombre fractionnaire : un nombre entier et une fraction propre, tous deux de même signe.
- Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
- Divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous :
- 5.861 : 5.217 = - 1 et le reste = - 644 ⇒
- 5.861 = - 1 × 5.217 - 644 ⇒
- 5.861/5.217 =
( - 1 × 5.217 - 644)/5.217 =
( - 1 × 5.217)/5.217 - 644/5.217 =
- 1 - 644/5.217 =
- 1 644/5.217
Sous forme de nombre décimal :
Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :
- 1 - 644/5.217 =
- 1 - 644 : 5.217 ≈
- 1,123442591528 ≈
- 1,12
En pourcentage :
- Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
- Pour ce faire, multipliez le nombre par la fraction 100/100.
- La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.
- 1,123442591528 =
- 1,123442591528 × 100/100 =
( - 1,123442591528 × 100)/100 =
- 112,34425915277/100 ≈
- 112,34425915277% ≈
- 112,34%
La réponse finale :
:: écrite de quatre manières ::
Comme fraction impropre négative :
(le numérateur >= le dénominateur)
- 86/141 - 57/111 = - 5.861/5.217
Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
- 86/141 - 57/111 = - 1 644/5.217
Sous forme de nombre décimal :
- 86/141 - 57/111 ≈ - 1,12
En pourcentage :
- 86/141 - 57/111 ≈ - 112,34%
Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.