- 305/469 + 303/414 = ? Additionner des fractions, calculatrice en ligne. Opération d'addition expliquée étape par étape
Addition de fractions : - 305/469 + 303/414 = ?
Simplifier l'opération
Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- * Pourquoi essaie-t-on de simplifier les fractions ?
- En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
* * *
La fraction : - 305/469
- 305/469 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 305 = 5 × 61
- 469 = 7 × 67
- PGCD (5 × 61; 7 × 67) = 1
La fraction : 303/414
- La décomposition en facteurs premiers du numérateur et du dénominateur :
- 303 = 3 × 101
- 414 = 2 × 32 × 23
- Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
- PGCD (303; 414) = 3
303/414 = (303 : 3)/(414 : 3) = 101/138
Une autre méthode pour simplifier la fraction :
- Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
303/414 = (3 × 101)/(2 × 32 × 23) = ((3 × 101) : 3)/((2 × 32 × 23) : 3) = 101/138
Réécrivez l'opération simplifiée équivalente :
- 305/469 + 303/414 =
- 305/469 + 101/138
Effectuez l'opération de calcul avec les fractions.
Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).
- Pour calculer l'opération des fractions, nous devons :
- 1) trouver leur dénominateur commun (le même dénominateur)
- 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
- 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur
- * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
- Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.
1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :
La décomposition des dénominateurs en facteurs premiers :
469 = 7 × 67
138 = 2 × 3 × 23
Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).
PPCM (469; 138) = 2 × 3 × 7 × 23 × 67 = 64.722
2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :
Divisez le PPCM par le dénominateur de chaque fraction.
- 305/469 ⟶ 64.722 : 469 = (2 × 3 × 7 × 23 × 67) : (7 × 67) = 138
101/138 ⟶ 64.722 : 138 = (2 × 3 × 7 × 23 × 67) : (2 × 3 × 23) = 469
3) Réduire les fractions au même dénominateur :
- Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
- Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.
- 305/469 + 101/138 =
- (138 × 305)/(138 × 469) + (469 × 101)/(469 × 138) =
- 42.090/64.722 + 47.369/64.722 =
( - 42.090 + 47.369)/64.722 =
5.279/64.722
Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :
5.279/64.722 est déjà simplifiée à la forme équivalente la plus simple.
Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres :
- 5.279 est un nombre premier
- 64.722 = 2 × 3 × 7 × 23 × 67
- PGCD (5.279; 2 × 3 × 7 × 23 × 67) = 1
Réécrire la fraction
Sous forme de nombre décimal :
Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :
5.279/64.722 =
5.279 : 64.722 ≈
0,081564228547 ≈
0,08
En pourcentage :
- Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
- Pour ce faire, multipliez le nombre par la fraction 100/100.
- La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.
0,081564228547 =
0,081564228547 × 100/100 =
(0,081564228547 × 100)/100 =
8,156422854671/100 ≈
8,156422854671% ≈
8,16%
La réponse finale :
:: écrite de trois manières ::
Comme fraction propre positive :
(le numérateur < le dénominateur)
- 305/469 + 303/414 = 5.279/64.722
Sous forme de nombre décimal :
- 305/469 + 303/414 ≈ 0,08
En pourcentage :
- 305/469 + 303/414 ≈ 8,16%
Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.