- 143/67 - 68/164 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape

Soustraction de fractions : - 143/67 - 68/164 = ?

Simplifier l'opération

Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • * Pourquoi essaie-t-on de simplifier les fractions ?
  • En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

* * *

La fraction : - 143/67

- 143/67 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 143 = 11 × 13
  • 67 est un nombre premier
  • PGCD (11 × 13; 67) = 1

La fraction : - 68/164

  • La décomposition en facteurs premiers du numérateur et du dénominateur :
  • 68 = 22 × 17
  • 164 = 22 × 41
  • Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
  • PGCD (68; 164) = 22 = 4

- 68/164 = - (68 : 4)/(164 : 4) = - 17/41


  • Une autre méthode pour simplifier la fraction :

  • Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
  • - 68/164 = - (22 × 17)/(22 × 41) = - ((22 × 17) : 22 )/((22 × 41) : 22 ) = - 17/41



Réécrivez l'opération simplifiée équivalente :

- 143/67 - 68/164 =


- 143/67 - 17/41

On réécrit les fractions impropres :

  • Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
  • Chaque fraction impropre sera réécrite comme un nombre entier et une fraction propre, les deux ayant le même signe : divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous.
  • Pourquoi réécrivons-nous les fractions impropres ?
  • En réduisant la valeur du numérateur d'une fraction, les calculs avec cette fraction deviennent plus faciles à effectuer.
* * *

La fraction : - 143/67


- 143 : 67 = - 2 et le reste = - 9 ⇒ - 143 = - 2 × 67 - 9


- 143/67 = ( - 2 × 67 - 9)/67 = ( - 2 × 67)/67 - 9/67 = - 2 - 9/67



Réécrivez l'opération simplifiée équivalente :

- 143/67 - 17/41 =


- 2 - 9/67 - 17/41

Effectuez l'opération de calcul avec les fractions.

Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).

  • Pour calculer l'opération des fractions, nous devons :
  • 1) trouver leur dénominateur commun (le même dénominateur)
  • 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
  • 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur

  • * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
  • Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.

1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :

La décomposition des dénominateurs en facteurs premiers :


67 est un nombre premier


41 est un nombre premier


Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).

PPCM (67; 41) = 41 × 67 = 2.747



2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :

Divisez le PPCM par le dénominateur de chaque fraction.


- 9/67 ⟶ 2.747 : 67 = (41 × 67) : 67 = 41


- 17/41 ⟶ 2.747 : 41 = (41 × 67) : 41 = 67


3) Réduire les fractions au même dénominateur :

  • Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
  • Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.

- 2 - 9/67 - 17/41 =


- 2 - (41 × 9)/(41 × 67) - (67 × 17)/(67 × 41) =


- 2 - 369/2.747 - 1.139/2.747 =


- 2 + ( - 369 - 1.139)/2.747 =


- 2 - 1.508/2.747


Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :

- 1.508/2.747 est déjà simplifiée à la forme équivalente la plus simple.

Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.


  • La décomposition en facteurs premiers des deux nombres :
  • 1.508 = 22 × 13 × 29
  • 2.747 = 41 × 67
  • PGCD (22 × 13 × 29; 41 × 67) = 1


Réécrivez le résultat intermédiaire

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :

  • Un nombre fractionnaire : un nombre entier et une fraction propre, tous deux de même signe.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.

- 2 - 1.508/2.747 = - 2 1.508/2.747

Comme fraction impropre négative :
(le numérateur >= le dénominateur)

Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.


- 2 - 1.508/2.747 =


( - 2 × 2.747)/2.747 - 1.508/2.747 =


( - 2 × 2.747 - 1.508)/2.747 =


- 7.002/2.747

Sous forme de nombre décimal :

Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :


- 2 - 1.508/2.747 =


- 2 - 1.508 : 2.747 ≈


- 2,54896250455 ≈


- 2,55

En pourcentage :

  • Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
  • Pour ce faire, multipliez le nombre par la fraction 100/100.
  • La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.

- 2,54896250455 =


- 2,54896250455 × 100/100 =


( - 2,54896250455 × 100)/100 =


- 254,896250455042/100


- 254,896250455042% ≈


- 254,9%



La réponse finale :
:: écrite de quatre manières ::

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
- 143/67 - 68/164 = - 2 1.508/2.747

Comme fraction impropre négative :
(le numérateur >= le dénominateur)
- 143/67 - 68/164 = - 7.002/2.747

Sous forme de nombre décimal :
- 143/67 - 68/164 ≈ - 2,55

En pourcentage :
- 143/67 - 68/164 ≈ - 254,9%

Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.

Autres opérations de ce type :

Comment soustraire les fractions :
- 153/72 - 72/174

Additionnez des fractions, calculateur en ligne :

En savoir plus sur les fractions (communes, ordinaires) / la théorie :