- 107/76 - 75/110 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape

Soustraction de fractions : - 107/76 - 75/110 = ?

Simplifier l'opération

Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • * Pourquoi essaie-t-on de simplifier les fractions ?
  • En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

* * *

La fraction : - 107/76

- 107/76 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 107 est un nombre premier
  • 76 = 22 × 19
  • PGCD (107; 22 × 19) = 1

La fraction : - 75/110

  • La décomposition en facteurs premiers du numérateur et du dénominateur :
  • 75 = 3 × 52
  • 110 = 2 × 5 × 11
  • Multipliez tous les facteurs premiers communs : s'il y a des facteurs premiers communs répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus petit exposant (les plus petites puissances).
  • PGCD (75; 110) = 5

- 75/110 = - (75 : 5)/(110 : 5) = - 15/22


  • Une autre méthode pour simplifier la fraction :

  • Sans calculer le PGCD, décomposer le numérateur et le dénominateur en facteurs premiers et éliminer tous les facteurs communs.
  • - 75/110 = - (3 × 52)/(2 × 5 × 11) = - ((3 × 52) : 5)/((2 × 5 × 11) : 5) = - 15/22



Réécrivez l'opération simplifiée équivalente :

- 107/76 - 75/110 =


- 107/76 - 15/22

On réécrit les fractions impropres :

  • Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
  • Chaque fraction impropre sera réécrite comme un nombre entier et une fraction propre, les deux ayant le même signe : divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous.
  • Pourquoi réécrivons-nous les fractions impropres ?
  • En réduisant la valeur du numérateur d'une fraction, les calculs avec cette fraction deviennent plus faciles à effectuer.
* * *

La fraction : - 107/76


- 107 : 76 = - 1 et le reste = - 31 ⇒ - 107 = - 1 × 76 - 31


- 107/76 = ( - 1 × 76 - 31)/76 = ( - 1 × 76)/76 - 31/76 = - 1 - 31/76



Réécrivez l'opération simplifiée équivalente :

- 107/76 - 15/22 =


- 1 - 31/76 - 15/22

Effectuez l'opération de calcul avec les fractions.

Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).

  • Pour calculer l'opération des fractions, nous devons :
  • 1) trouver leur dénominateur commun (le même dénominateur)
  • 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
  • 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur

  • * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
  • Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.

1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :

La décomposition des dénominateurs en facteurs premiers :


76 = 22 × 19


22 = 2 × 11


Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).

PPCM (76; 22) = 22 × 11 × 19 = 836



2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :

Divisez le PPCM par le dénominateur de chaque fraction.


- 31/76 ⟶ 836 : 76 = (22 × 11 × 19) : (22 × 19) = 11


- 15/22 ⟶ 836 : 22 = (22 × 11 × 19) : (2 × 11) = 38


3) Réduire les fractions au même dénominateur :

  • Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
  • Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.

- 1 - 31/76 - 15/22 =


- 1 - (11 × 31)/(11 × 76) - (38 × 15)/(38 × 22) =


- 1 - 341/836 - 570/836 =


- 1 + ( - 341 - 570)/836 =


- 1 - 911/836


Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :

- 911/836 est déjà simplifiée à la forme équivalente la plus simple.

Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.


  • La décomposition en facteurs premiers des deux nombres :
  • 911 est un nombre premier
  • 836 = 22 × 11 × 19
  • PGCD (911; 22 × 11 × 19) = 1


Réécrivez le résultat intermédiaire

Comme fraction impropre négative :
(le numérateur >= le dénominateur)

  • Une fraction impropre : la valeur du numérateur est supérieure ou égale à la valeur du dénominateur.

- 1 - 911/836 =


( - 1 × 836)/836 - 911/836 =


( - 1 × 836 - 911)/836 =


- 1.747/836

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :

  • Un nombre fractionnaire : un nombre entier et une fraction propre, tous deux de même signe.
  • Une fraction propre : la valeur du numérateur est inférieure à la valeur du dénominateur.
  • Divisez le numérateur par le dénominateur et notez le quotient et le reste de la division, comme indiqué ci-dessous :

- 1.747 : 836 = - 2 et le reste = - 75 ⇒


- 1.747 = - 2 × 836 - 75 ⇒


- 1.747/836 =


( - 2 × 836 - 75)/836 =


( - 2 × 836)/836 - 75/836 =


- 2 - 75/836 =


- 2 75/836

Sous forme de nombre décimal :

Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :


- 2 - 75/836 =


- 2 - 75 : 836 ≈


- 2,08971291866 ≈


- 2,09

En pourcentage :

  • Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
  • Pour ce faire, multipliez le nombre par la fraction 100/100.
  • La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.

- 2,08971291866 =


- 2,08971291866 × 100/100 =


( - 2,08971291866 × 100)/100 =


- 208,971291866029/100


- 208,971291866029% ≈


- 208,97%



La réponse finale :
:: écrite de quatre manières ::

Comme fraction impropre négative :
(le numérateur >= le dénominateur)
- 107/76 - 75/110 = - 1.747/836

Sous forme de nombre fractionnaire (également appelé fraction mixte, ou nombre mixte) :
- 107/76 - 75/110 = - 2 75/836

Sous forme de nombre décimal :
- 107/76 - 75/110 ≈ - 2,09

En pourcentage :
- 107/76 - 75/110 ≈ - 208,97%

Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.

Autres opérations de ce type :

Comment additionner les fractions :
114/83 + 81/119

Additionnez des fractions, calculateur en ligne :

En savoir plus sur les fractions (communes, ordinaires) / la théorie :