7/16 + 5/12 = ? Additionner des fractions, calculatrice en ligne. Opération d'addition expliquée étape par étape

Addition de fractions : 7/16 + 5/12 = ?

Simplifier l'opération

Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • * Pourquoi essaie-t-on de simplifier les fractions ?
  • En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

* * *

La fraction : 7/16

7/16 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 7 est un nombre premier
  • 16 = 24
  • PGCD (7; 24) = 1

La fraction : 5/12

5/12 est déjà simplifiée à la forme équivalente la plus simple.


  • Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
  • La décomposition en facteurs premiers des deux nombres :
  • 5 est un nombre premier
  • 12 = 22 × 3
  • PGCD (5; 22 × 3) = 1


Effectuez l'opération de calcul avec les fractions.

Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).

  • Pour calculer l'opération des fractions, nous devons :
  • 1) trouver leur dénominateur commun (le même dénominateur)
  • 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
  • 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur

  • * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
  • Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.

1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :

La décomposition des dénominateurs en facteurs premiers :


16 = 24


12 = 22 × 3


Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).

PPCM (16; 12) = 24 × 3 = 48



2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :

Divisez le PPCM par le dénominateur de chaque fraction.


7/16 ⟶ 48 : 16 = (24 × 3) : 24 = 3


5/12 ⟶ 48 : 12 = (24 × 3) : (22 × 3) = 4


3) Réduire les fractions au même dénominateur :

  • Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
  • Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.

7/16 + 5/12 =


(3 × 7)/(3 × 16) + (4 × 5)/(4 × 12) =


21/48 + 20/48 =


(21 + 20)/48 =


41/48


Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :

  • Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
  • Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.

41/48 est déjà simplifiée à la forme équivalente la plus simple.

Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.


  • La décomposition en facteurs premiers des deux nombres :
  • 41 est un nombre premier
  • 48 = 24 × 3
  • PGCD (41; 24 × 3) = 1


Réécrire la fraction

Sous forme de nombre décimal :

Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :


41/48 =


41 : 48 ≈


0,854166666667 ≈


0,85

En pourcentage :

  • Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
  • Pour ce faire, multipliez le nombre par la fraction 100/100.
  • La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.

0,854166666667 =


0,854166666667 × 100/100 =


(0,854166666667 × 100)/100 =


85,416666666667/100


85,416666666667% ≈


85,42%



La réponse finale :
:: écrite de trois manières ::

Comme fraction propre positive :
(le numérateur < le dénominateur)
7/16 + 5/12 = 41/48

Sous forme de nombre décimal :
7/16 + 5/12 ≈ 0,85

En pourcentage :
7/16 + 5/12 ≈ 85,42%

Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.

Autres opérations de ce type :

Comment additionner les fractions :
15/24 + 7/23

Additionnez des fractions, calculateur en ligne :

En savoir plus sur les fractions (communes, ordinaires) / la théorie :