2/9 - 4/15 = ? Soustraire des fractions, calculatrice en ligne. Opération de soustraction expliquée étape par étape
Soustraction de fractions : 2/9 - 4/15 = ?
Simplifier l'opération
Simplifiez les fractions le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- * Pourquoi essaie-t-on de simplifier les fractions ?
- En réduisant les valeurs des numérateurs et des dénominateurs des fractions, les calculs sont plus faciles à effectuer.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
* * *
La fraction : 2/9
2/9 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 2 est un nombre premier
- 9 = 32
- PGCD (2; 32) = 1
La fraction : - 4/15
- 4/15 est déjà simplifiée à la forme équivalente la plus simple.
- Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres : 4 = 22
- 15 = 3 × 5
- PGCD (22; 3 × 5) = 1
Effectuez l'opération de calcul avec les fractions.
Pour additionner ou soustraire des fractions, nous avons besoin qu'elles aient des dénominateurs égaux (le même dénominateur).
- Pour calculer l'opération des fractions, nous devons :
- 1) trouver leur dénominateur commun (le même dénominateur)
- 2) puis calculer les nombres par lesquels chaque dénominateur est multiplié, afin d'avoir tous les dénominateurs des fractions égaux (au même dénominateur)
- 3) puis réduire les fractions au même dénominateur, en les transformant en formes équivalentes, qui ont toutes le même dénominateur
- * Le même dénominateur n'est rien d'autre que le plus petit commun multiple (PPCM) des dénominateurs des fractions.
- Le PPCM sera le même dénominateur des fractions avec lesquelles nous travaillons.
1) Trouver le dénominateur commun
Calculez le PPCM des dénominateurs :
La décomposition des dénominateurs en facteurs premiers :
9 = 32
15 = 3 × 5
Multipliez tous les facteurs premiers uniques : s'il y a des facteurs premiers répétitifs, nous ne les prenons qu'une seule fois, et seulement ceux qui ont le plus grand exposant (les puissances les plus élevées).
PPCM (9; 15) = 32 × 5 = 45
2) Calculez les nombres par lesquels chaque dénominateur est multiplié, afin que tous les dénominateurs des fractions soient égaux :
Divisez le PPCM par le dénominateur de chaque fraction.
2/9 ⟶ 45 : 9 = (32 × 5) : 32 = 5
- 4/15 ⟶ 45 : 15 = (32 × 5) : (3 × 5) = 3
3) Réduire les fractions au même dénominateur :
- Remplacez chaque fraction par une fraction équivalente : multipliez son numérateur et son dénominateur par le nombre correspondant, calculé à l'étape 2 ci-dessus. De cette façon, toutes les fractions auront des dénominateurs égaux (le même dénominateur).
- Maintenez ensuite le dénominateur commun et faites les calculs uniquement avec les numérateurs des fractions.
2/9 - 4/15 =
(5 × 2)/(5 × 9) - (3 × 4)/(3 × 15) =
10/45 - 12/45 =
(10 - 12)/45 =
- 2/45
Réduisez (simplifiez) la fraction le plus possible, à la forme équivalente la plus simple, irréductible :
- Pour simplifier une fraction à la forme équivalente la plus simple : divisez le numérateur et le dénominateur par leur plus grand commun diviseur, PGCD.
- Une fraction simplifiée à la forme équivalente la plus simple est une fraction avec le plus petit numérateur et dénominateur possible, une fraction qui ne peut plus être simplifiée.
- 2/45 est déjà simplifiée à la forme équivalente la plus simple.
Le numérateur et le dénominateur n'ont pas de facteurs premiers communs.
- La décomposition en facteurs premiers des deux nombres :
- 2 est un nombre premier
- 45 = 32 × 5
- PGCD (2; 32 × 5) = 1
Réécrire la fraction
Sous forme de nombre décimal :
Divisez simplement le numérateur par le dénominateur, sans reste, comme indiqué ci-dessous :
- 2/45 =
- 2 : 45 ≈
- 0,044444444444 ≈
- 0,04
En pourcentage :
- Une valeur en pourcentage p% est égale à la fraction : p/100, pour tout nombre décimal p. Donc, nous devons changer la forme du nombre obtenu ci-dessus, pour avoir un dénominateur de 100.
- Pour ce faire, multipliez le nombre par la fraction 100/100.
- La valeur de la fraction 100/100 = 1, donc en multipliant le nombre par cette fraction, le résultat ne change pas, seulement la forme.
- 0,044444444444 =
- 0,044444444444 × 100/100 =
( - 0,044444444444 × 100)/100 =
- 4,444444444444/100 ≈
- 4,444444444444% ≈
- 4,44%
La réponse finale :
:: écrite de trois manières ::
Sous forme de fraction propre négative :
(le numérateur < le dénominateur)
2/9 - 4/15 = - 2/45
Sous forme de nombre décimal :
2/9 - 4/15 ≈ - 0,04
En pourcentage :
2/9 - 4/15 ≈ - 4,44%
Comment les nombres sont-ils écrits sur notre site Web : le point '.' est utilisé comme séparateur de milliers ; la virgule ',' est utilisée comme séparateur décimal ; les nombres sont arrondis à 12 décimales maximum (le cas échéant). L'ensemble des symboles utilisés sur notre site : / la ligne de fraction ; : partage; × multiplier ; + plus (additionner) ; - moins (soustraction) ; = égal ; ≈ approximativement égal.